Publication


Journal of Dental Research 91, 1154-1159 (2012).
Requirement of Integrin β3 for Iron Transportation during Enamel Formation

Author

Yoshida T, Kumashiro Y, Iwata T, Ishihara J, Umemoto T, Shiratsuchi Y, Kawashima N, Sugiyama T, Yamato M, Okano T

Keyword

odontogenesis,incisor,mice,pigmentation,x-ray photoelectron spectroscopy,iron transporter

Category

Journal

Abstract

Rodent incisors exhibit pigmentation on their labial surfaces. Although previous studies have shown that this pigment is composed of iron, the existence of other elements has not been investigated. This study found that the lower incisors of CD61, also known as integrin β3, null mice (CD61-/-) lacked pigmentation. Although ameloblasts differentiated and formed enamel normally, no ferric ion accumulation was observed in maturation-stage ameloblasts in CD61-/- mice. Surface elements of control and CD61-/- lower incisors were compared by x-ray photoelectron spectroscopy (XPS). XPS analysis detected C, Ca, N, O, and P on the labial surfaces of lower incisors of both mice, whereas Fe was detected only in control samples. No peak of non-ferrous metal or other element was detected in either group. Quantitative RT-PCR analysis of 18 iron-transportation-related genes with mRNA from maturation-stage ameloblasts and ALC, a pre-ameloblastic cell line, was performed. The results suggested that CD61 regulates the expressions of Slc11a2 and Slc40a1, both of which are involved in iron transportation in epithelial tissues. These results suggested that the pigment on the labial surface of mouse incisors is composed of Fe and that both anemia and reduction of iron-transporting proteins may cause the loss of pigmentation in CD61-/- mice.